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Diversity of nuclear phenomena

○How many bound nuclei exist? (~6000-7000?)

○Heaviest possible element?  Enhanced stability near Z=120?

○How nuclei have been produced in the universe?

○Where is the neutron drip-line beyond Z=8?

○How magic numbers evolve?

[figure from B. Bally]

Ground state!
Mass, size, deformation, superfluidity, …

Radioactive decays!
β, 2β, α, p, 2p, fission, …

Spectroscopy!
Excitation modes

Reaction processes!
Fusion, transfer, knockout, …

Exotic structures!
Clusters, halos, …

[calculations from S. Hilaire et al.]



Ab initio A-body problem
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⦿ Interacting via

Pions + contact interactions

Contact interactions

➟ Pionful EFT

➟ Pionless EFT

⦿ Effective field theory (EFT)
○ Systematic construction of AN interactions (A=2, 3, …)
○ Symmetries of underlying theory built in

Low energies

Very low energies

○ Coupling constants fixed by QCD (ideally) or data

⦿ Implement in A-body sector  ➝  “ab initio” nuclear A-body problem

⦿ Solve in A-body sector  ➝  emerging nuclear phenomena (= low-energy observables)

⦿ Nucleus viewed as effective structure-less nucleons
○ Possibly + ∆s (+ hyperons)

⦿ Benefits: systematic improvement, assessment of errors, controlled extrapolations



Three-nucleon forces

The need for three-body forces

‣ empirical values for saturation

[ Akmal et al., Phys. Rev. C 58 (1998) ]

[ Baldo and Maieron, J. Phys. G 34 (2007) ]

Chapter 4

Nuclear matter properties with
three-body forces

4.1 Energy in symmetric nuclear matter

⇥sat � ⇥0 = 0.16± 0.01 fm�3 (4.1)
Esat/N � B = 16± 1 MeV (4.2)

We consider in the following only two of the four realistic NN interactions employed
in Chapter 2, namely the CD-Bonn and the Nijmegen potentials. These proved to be
the most stable at low/high density and high temperature, moreover the A18 and Reid
calculations are characterized by an excessive repulsive behaviour below saturation
density, which cannot be cured with the introduction of three-body forces. This is
possibly due to the inability of the T-matrix scheme to treat correctly the strong
repulsive core in the case of Argonne, and the quantitative inaccuracy of the dated
Reid interaction.

For the two mentioned potentials the averaged three-body forces have been added
to the two-body contributions as outlined in details in Chapter 3. First the calculations
have been performed around saturation density in order to tune the two parameters
U and A which control the overall and relative strength of the two contributions (cf.
(3.4) and (3.10)). The parameters have been adjusted separately for the CD-Bonn and
for the Nijmegen potential by requiring the energy particle to reproduce the empirical
values of the saturation density ⇥0 and the binding energy EB. We do expect di�erent
values of {A, U} for the two NN interactions: since they yield di�erent saturation
curves the missing e�ects do not have to be necessarily the same. This argument surely
applies to the more phenomenological repulsive term (3.10). We believe that however
it is also the case of the 2�-exchange contribution, due to the averaging procedure
which unavoidably makes the resulting two-body interaction an e�ective one. As long
as TBF are not derived consistently within the same theoretical framework, one should
expect this motivation to be valid also for other approaches.

Once the parameters have been fixed, we extend the calculations to the whole
density domain ⇥ ⇥ [0.4 ⇥0, 3 ⇥0] starting with the case of symmetric nuclear matter.
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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other words, the results indicate that the missing of the saturation point is not
due to a lack of accuracy in the treatment of the nuclear many-body problem,
but to a defect of the nuclear hamiltonian. The need of three-body forces in nu-
clear matter is consistent with the findings in the study of few nucleon systems,
where also the binding energy and radii, as well as scattering data, cannot be
reproduced with only two-body forces. Not surprisingly, the effects of three-body
forces seem to be more pronounced in nuclear matter than in few body systems.

The standard NN interaction models are based on the meson–nucleon field
theory, where the nucleon is considered an unstructured point-like particle. The
Paris, the Argonne v14 (with the improved version v18 [11]), and the set of Bonn
potentials [12] fall in this category. In the one-boson exchange potential (OBEP)
model one further assumes that no meson–meson interaction is present and each
meson is exchanged in a different interval of time from the others. However,
the nucleon is a structured particle, it is a bound state of three quarks with
a gluon-mediated interaction, according to Quantum Chromodynamics (QCD).
The absorption and emission of mesons can be accompanied by a modification of
the nucleon structure in the intermediate states, even in the case of NN scattering
processes, in which only nucleonic degrees of freedom are present asymptotically.
A way of describing such processes is to introduce the possibility that the nucleon
can be excited (“polarized”) to other states or resonances. The latter can be the
known resonances observed in meson–nucleon scattering. At low enough energy
the dominant resonance is the ∆33, which is the lowest in mass. If the internal
nucleon state can be distorted by the presence of another nucleon, the interaction
between two nucleons is surely altered by the presence of a third one. This effect
produces clearly a definite three-body force, which is absent if the nucleons are
considered unstructured. The simplest of such process is depicted in Fig. 13b.

Fig. 13. An interaction process among three nucleons with only two-body force (a),
and a process involving a genuine three-body force (b).

Such a process can be interpreted in different but equivalent ways. One way is to
view the pion (meson) coming from the first nucleon to polarize the second one,
which therefore interacts with a third one as a ∆33 resonance, surely in a different

16 M. Baldo and F. Burgio

way than if it had remained a nucleon, like in Fig. 13a. The process of Fig. 13a
is not indeed a three-nucleon force, but just a repetition of a two-nucleon force.
The introduction of a three-nucleon interaction is a consequence of viewing pro-
cesses like the one of Fig. 13b as an effective interaction among three nucleons,
which eventually will be medium-dependent. The genuine three-nucleon forces
can be extracted from processes like the one of Fig. 13b by projecting out the
∆33 (or other resonances) degrees of freedom in some approximate way. The
theory of three-nucleon forces has a very long history, and it started to be de-
veloped since the early stage [13] of the theory of nuclear matter EOS, as well
as of few nucleon systems [14]. The most extensive study of the three-nucleon
forces (TNF) has been pursued by Grangé and collaborators [15]. Fig. 14, re-
produced from Ref. [16], indicates some of the processes which can give rise to
TNF. Graph of Fig. 14a is a generalization of the process of Fig. 13b, where
other nucleon resonances (e.g. the Roper resonance) can appear as intermedi-
ate virtual excitation and other exchanged mesons can be present. Graph 14b
includes possible non-linear meson-nucleon coupling, as demanded by the chiral
symmetry limit [16]. Graph 14c is the simplest one which includes meson-meson
interaction. Other processes of this type are of course possible [15,16], which in-
volves other meson-meson couplings, and they should be included in a complete
treatment of TNF. Diagram 14d describes the effect of the virtual excitation of

Fig. 14. Some of the processes which can produce a genuine three-body force.

a nucleon-antinucleon pair, and it is therefore somehow of different nature from
the others. It gives an important (repulsive) contribution and it has been shown
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forces (TNF) has been pursued by Grangé and collaborators [15]. Fig. 14, re-
produced from Ref. [16], indicates some of the processes which can give rise to
TNF. Graph of Fig. 14a is a generalization of the process of Fig. 13b, where
other nucleon resonances (e.g. the Roper resonance) can appear as intermedi-
ate virtual excitation and other exchanged mesons can be present. Graph 14b
includes possible non-linear meson-nucleon coupling, as demanded by the chiral
symmetry limit [16]. Graph 14c is the simplest one which includes meson-meson
interaction. Other processes of this type are of course possible [15,16], which in-
volves other meson-meson couplings, and they should be included in a complete
treatment of TNF. Diagram 14d describes the effect of the virtual excitation of

Fig. 14. Some of the processes which can produce a genuine three-body force.

a nucleon-antinucleon pair, and it is therefore somehow of different nature from
the others. It gives an important (repulsive) contribution and it has been shown

16 M. Baldo and F. Burgio

way than if it had remained a nucleon, like in Fig. 13a. The process of Fig. 13a
is not indeed a three-nucleon force, but just a repetition of a two-nucleon force.
The introduction of a three-nucleon interaction is a consequence of viewing pro-
cesses like the one of Fig. 13b as an effective interaction among three nucleons,
which eventually will be medium-dependent. The genuine three-nucleon forces
can be extracted from processes like the one of Fig. 13b by projecting out the
∆33 (or other resonances) degrees of freedom in some approximate way. The
theory of three-nucleon forces has a very long history, and it started to be de-
veloped since the early stage [13] of the theory of nuclear matter EOS, as well
as of few nucleon systems [14]. The most extensive study of the three-nucleon
forces (TNF) has been pursued by Grangé and collaborators [15]. Fig. 14, re-
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‣ modification of the internal structure of hadrons

22 Three-Body Forces

4.2 Three-body Hamiltonian

Formally three-body forces are included by adding a term to the two-body Hamil-
tonian (2.6)

H = H2 body ⇤ H ⇥ = H2 body + H3 body , (4.1)

where

H3 body =
1
3!

⌃
dr1 dr2 dr3 ⇥†(1)⇥†(2)⇥†(3)V3(r1, r2, r3) ⇥(3)⇥(2)⇥(1) . (4.2)

We employ in this work the three-body potential developed by the Urbana group
[16], composed of two terms

V Urbana
ijk = V 2�

ijk + V R
ijk . (4.3)

The first part, attractive and dominant at low densities, is constructed from two-
pion exchange with a � appearing as intermediate state as described in the pre-
vious section; the repulsive contribution is responsible for the correct saturation
and prevails at high densities.

The two potentials are structured as a sum over cyclic permutations of the
three particles, denoted by the indeces {i, j, k}. The 2�-exchange term reads

V 2�
ijk = A

⇧

cyc

⇤
{Xij , Xjk} {⇥i · ⇥j , ⇥j · ⇥k} +

1
4

[Xij , Xjk] [⇥i · ⇥j , ⇥j · ⇥k]
⌅

, (4.4)

where
Xij = Y (rij) �i · �j + T (rij) Sij . (4.5)

Here rij ⇥ ri � rj is the distance between particles i and j and the non-bold
character denotes the vector norm rij ⇥ |rij |. The tensor operator is defined as
Sij = [3 (�i · r̂ij)(�j · r̂ij) � �i · �j ] where r̂ij ⇥ rij

|rij | is the unit vector. The two
radial functions Y (r) and T (r) are respectively the Yukawa

Y (r) =
e�ar

ar
Ycut(r) (4.6)

and the tensor function

T (r) =
⇤

1 +
3
ar

+
3

a2r2

⌅
e�ar

ar
Tcut(r) , (4.7)

in which it is necessary to introduce a short-range cuto⇥

Ycut(r) = 1� e�br2
, (4.8)

Tcut(r) =
�
1� e�br2

⇥2
. (4.9)

⇢ and others:

⇢  Δ-excitation ↔   2π exchange
The need for three-body forces

‣ empirical values for saturation

[ Akmal et al., Phys. Rev. C 58 (1998) ]

[ Baldo and Maieron, J. Phys. G 34 (2007) ]

Chapter 4

Nuclear matter properties with
three-body forces

4.1 Energy in symmetric nuclear matter

⇥sat � ⇥0 = 0.16± 0.01 fm�3 (4.1)
Esat/N � B = 16± 1 MeV (4.2)

We consider in the following only two of the four realistic NN interactions employed
in Chapter 2, namely the CD-Bonn and the Nijmegen potentials. These proved to be
the most stable at low/high density and high temperature, moreover the A18 and Reid
calculations are characterized by an excessive repulsive behaviour below saturation
density, which cannot be cured with the introduction of three-body forces. This is
possibly due to the inability of the T-matrix scheme to treat correctly the strong
repulsive core in the case of Argonne, and the quantitative inaccuracy of the dated
Reid interaction.

For the two mentioned potentials the averaged three-body forces have been added
to the two-body contributions as outlined in details in Chapter 3. First the calculations
have been performed around saturation density in order to tune the two parameters
U and A which control the overall and relative strength of the two contributions (cf.
(3.4) and (3.10)). The parameters have been adjusted separately for the CD-Bonn and
for the Nijmegen potential by requiring the energy particle to reproduce the empirical
values of the saturation density ⇥0 and the binding energy EB. We do expect di�erent
values of {A, U} for the two NN interactions: since they yield di�erent saturation
curves the missing e�ects do not have to be necessarily the same. This argument surely
applies to the more phenomenological repulsive term (3.10). We believe that however
it is also the case of the 2�-exchange contribution, due to the averaging procedure
which unavoidably makes the resulting two-body interaction an e�ective one. As long
as TBF are not derived consistently within the same theoretical framework, one should
expect this motivation to be valid also for other approaches.

Once the parameters have been fixed, we extend the calculations to the whole
density domain ⇥ ⇥ [0.4 ⇥0, 3 ⇥0] starting with the case of symmetric nuclear matter.
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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⦿ Practical reason: 2N-only interactions fail to reproduce properties of many-nucleon systems  

○ E.g. saturation point of infinite nuclear matter

⦿ Fundamental reason: nucleons are composite particles, NN is an effective interaction 

○More complicated processes, e.g. involving nucleon excitations, can not be described as NN
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We calculate the properties of neutron matter and highlight the physics of chiral three-nucleon forces. For
neutrons, only the long-range 2π -exchange interactions of the leading chiral three-nucleon forces contribute,
and we derive density-dependent two-body interactions by summing the third particle over occupied states in the
Fermi sea. Our results for the energy suggest that neutron matter is perturbative at nuclear densities. We study in
detail the theoretical uncertainties of the neutron matter energy, provide constraints for the symmetry energy and
its density dependence, and explore the impact of chiral three-nucleon forces on the S-wave superfluid pairing gap.
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I. INTRODUCTION

The physics of neutron matter ranges over exciting ex-
tremes: from universal properties at low densities [1,2] that
can be probed in experiments with ultracold atoms [3]; to
using neutron matter properties at nuclear densities to guide
the development of a universal density functional [4,5] and to
constrain the physics of neutron-rich nuclei; to higher densities
involved in the structure of neutron stars [6]. In the theory of
nuclear matter, recent advances [7,8] are based on systematic
chiral effective field theory (EFT) interactions [9,10] combined
with a renormalization group (RG) evolution to low momenta
[11,12]. This evolution improves the convergence of many-
body calculations [7,13,14], and the nuclear matter energy
shows saturation with controlled uncertainties [8]. In this
paper, we extend these developments to neutron matter with a
focus on three-nucleon (3N) forces.

Our studies are based on evolved nucleon-nucleon (NN)
interactions at next-to-next-to-next-to-leading order (N3LO)
[15,16] and on the next-to-next-to-leading order (N2LO) 3N
forces [17,18]. In Sec. II, we show that only the long-range 2π -
exchange 3N interactions contribute in pure neutron matter. We
then construct density-dependent two-body interactions V 3N
by summing the third particle over occupied states in the Fermi
sea. Effective interactions of this sort have been studied in the
past by using 3N potential models and approximate treatments
(see, for example, Refs. [19,20]). We derive a general operator
and momentum structure of V 3N and analyze the partial-wave
contributions and the density dependence of V 3N. This pro-
vides insights to the role of chiral 3N forces in neutron matter.

In Sec. III, we apply V 3N to calculate the properties of
neutron matter as a function of Fermi momentum kF [or the
density ρ = k3

F/(3π2)] based on a loop expansion around the
Hartree-Fock energy. Our second-order results for the energy
suggest that neutron matter is perturbative at nuclear densities,
where N2LO 3N forces provide a repulsive contribution.
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We study in detail the theoretical uncertainties of the neutron
matter energy and find that the uncertainty in the c3 coefficient
of 3N forces dominates. Other recent neutron matter
calculations lie within the resulting energy band. In addition,
the energy band provides constraints for the symmetry energy
and its density dependence. Finally, we study the impact of
chiral 3N forces on the 1S0 superfluid pairing gap at the BCS
level. We conclude and give an outlook in Sec. IV.

II. 3N FORCES AS DENSITY-DEPENDENT TWO-BODY
INTERACTIONS

Nuclear forces depend on a resolution scale, which is
generally determined by a momentum cutoff #, and are given
by an effective theory for scale-dependent two-nucleon and
corresponding many-nucleon interactions [9–11,21]:

H (#) = T + VNN(#) + V3N(#) + V4N(#) + · · · . (1)

Our calculations are based on chiral EFT interactions. We start
from the N3LO NN potential (# = 500 MeV) of Ref. [15]
and use the RG to evolve this NN potential to low-momentum
interactions Vlow k with a smooth nexp = 4 regulator with
# = 1.8 − 2.8 fm−1 [12,22]. This evolution softens the
short-range repulsion and short-range tensor components of
the initial chiral interaction [7,23]. Based on the universality
of Vlow k [8,12], we do not expect large differences starting
from different N3LO potentials.

In chiral EFT without explicit Deltas, 3N forces start at
N2LO and contain a long-range 2π -exchange part Vc, an
intermediate-range 1π -exchange part VD , and a short-range
contact interaction VE [17,18]:

π π π

c1, c3, c4 cD cE

(2)

The 2π -exchange interaction is given by

Vc = 1
2

(
gA

2fπ

)2 ∑

i ̸=j ̸=k

(σ i · qi)(σ j · qj )(
q2

i + m2
π

)(
q2

j + m2
π

)F
αβ
ijkτ

α
i τ

β
j , (3)
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The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass

nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-

model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic

explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body

systems. This leads to repulsive contributions to the interactions among excess neutrons that change the

location of the neutron drip line from 28O to the experimentally observed 24O. Since the mechanism is

robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of

heavy elements in neutron-rich environments.
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One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to the
neutron drip line. These limits have been established ex-
perimentally up to oxygen with proton number Z ¼ 8.
Mapping out the neutron drip line for larger Z [1] and
exploring unexpected structures in neutron-rich nuclei are
a current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip line evolves regu-
larly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present in
the oxygen isotopes, where the drip line is strikingly close
to the stability line [2]. Already in the fluorine isotopes,
with one more proton, the drip line is back to the regular
trend [3]. In this Letter, we discuss this puzzle and show
that three-body forces are necessary to explain why 24O
[4,5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [6] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a
second nucleon to the !ð1232 MeVÞ resonance, which is
deexcited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [7], which provides a systematic
basis for nuclear forces, where nucleons interact via pion
exchanges and shorter-range contact interactions. The re-
sulting nuclear forces are organized in a systematic expan-

sion from leading to successively higher orders, and
include the! excitation as the dominant part of the leading
3N forces [7]. The quantitative role of 3N interactions has
been highlighted in recent ab initio calculations of light
nuclei with A ¼ N þ Z & 12 [8,9].
We first discuss why the oxygen anomaly is not repro-

duced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change this
intuitive picture. Starting from 16O, neutrons first fill the
0d5=2 orbitals, with a closed subshell configuration at 22O
(N ¼ 14), then the 1s1=2 orbitals at 24O (N ¼ 16), and
finally the 0d3=2 orbitals at 28O (N ¼ 20). For simplicity,
we will drop the n label in the following.

FIG. 1 (color online). Stable and unstable nuclei with Z & 14
and neutron number N [35]. The oxygen anomaly in the location
of the neutron drip line is highlighted. Element names and years
of discovery of the most neutron-rich nuclei are given. The axis
numbers indicate the conventional magic numbers.
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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(Fig. 1) is over bound at !130:8ð1Þ MeV but in close
agreement with the !130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and !SRG ¼ 2:0 fm!1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on !SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and !SRG ¼ 2:0 fm!1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-
existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from
full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound
quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also
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FIG. 3 (color online). Top. Evolution of single particle ener-
gies for neutron addition and removal around sub-shell closures
of oxygen isotopes. Bottom. Binding energies obtained from the
Koltun SR and the poles of propagator (1), compared to experi-
ment (bars) [44,46,47]. All points are corrected for the kinetic
energy of the c.o.m. motion. For all lines, red squares (blue dots)
refer to induced (full) 3NFs.
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and fluorine isotopes calculated for induced (red squares)
and full (green dots) interactions. Experimental data are from
[45–47].
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(Fig. 1) is over bound at !130:8ð1Þ MeV but in close
agreement with the !130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and !SRG ¼ 2:0 fm!1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on !SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and !SRG ¼ 2:0 fm!1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-
existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from
full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound
quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also

2s1 2

1d5 2

1d3 2

8

6

4

2

0

2

4

6

iA
1

M
eV

2N 3N full
2N 3N ind

24 MeV
SRG 2.0 fm 1

14O 16O 22O 24O 28O
180

160

140

120

100

80

60

E
g.

s.
M

eV

Exp
2N 3N full
2N 3N ind

FIG. 3 (color online). Top. Evolution of single particle ener-
gies for neutron addition and removal around sub-shell closures
of oxygen isotopes. Bottom. Binding energies obtained from the
Koltun SR and the poles of propagator (1), compared to experi-
ment (bars) [44,46,47]. All points are corrected for the kinetic
energy of the c.o.m. motion. For all lines, red squares (blue dots)
refer to induced (full) 3NFs.

24 MeV
SRG 2.0 fm 1

15F 17F 23F 25F 29F

180

160

140

120

100

80

13N 15N 21N 23N 27N

E
g.

s.
M

eV

Exp
2N 3N ind
2N 3N full

FIG. 4 (color online). Binding energies of odd-even nitrogen
and fluorine isotopes calculated for induced (red squares)
and full (green dots) interactions. Experimental data are from
[45–47].

PRL 111, 062501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

062501-4

○Neutron drip line experimentally known 
only up to Z=8

○O drip line strikingly close to stability

SCGF correctly reproduces drip line at 24O           ➝         essential role of three-body forces

[Cipollone et al. 2013]
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One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to the
neutron drip line. These limits have been established ex-
perimentally up to oxygen with proton number Z ¼ 8.
Mapping out the neutron drip line for larger Z [1] and
exploring unexpected structures in neutron-rich nuclei are
a current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip line evolves regu-
larly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present in
the oxygen isotopes, where the drip line is strikingly close
to the stability line [2]. Already in the fluorine isotopes,
with one more proton, the drip line is back to the regular
trend [3]. In this Letter, we discuss this puzzle and show
that three-body forces are necessary to explain why 24O
[4,5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [6] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a
second nucleon to the !ð1232 MeVÞ resonance, which is
deexcited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [7], which provides a systematic
basis for nuclear forces, where nucleons interact via pion
exchanges and shorter-range contact interactions. The re-
sulting nuclear forces are organized in a systematic expan-

sion from leading to successively higher orders, and
include the! excitation as the dominant part of the leading
3N forces [7]. The quantitative role of 3N interactions has
been highlighted in recent ab initio calculations of light
nuclei with A ¼ N þ Z & 12 [8,9].
We first discuss why the oxygen anomaly is not repro-

duced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change this
intuitive picture. Starting from 16O, neutrons first fill the
0d5=2 orbitals, with a closed subshell configuration at 22O
(N ¼ 14), then the 1s1=2 orbitals at 24O (N ¼ 16), and
finally the 0d3=2 orbitals at 28O (N ¼ 20). For simplicity,
we will drop the n label in the following.

FIG. 1 (color online). Stable and unstable nuclei with Z & 14
and neutron number N [35]. The oxygen anomaly in the location
of the neutron drip line is highlighted. Element names and years
of discovery of the most neutron-rich nuclei are given. The axis
numbers indicate the conventional magic numbers.
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
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Emergence of magic numbers

⦿ Traditional magic numbers disappear and/or new magic numbers appear in neutron-rich nuclei

⦿ “Magic” features emerge to different extents from underlying 2N+3N interactions
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Other isotopes have similar speeds of convergence, e.g., the
same variation of the model space induces a change of 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ≡ EZ,N

0 − EZ,N−2
0 . To test this we performed exponential

extrapolations of the calculated binding energies of a few
nuclei, using the last few odd values of Nmax. We found
variations of at most ≈500 keV with respect to the value
calculated at Nmax = 13. Hence, we take this as an estimate
of the convergence error on computed S2n. In the following
we present our results calculated for Nmax = 13 and !! =
28 MeV, which corresponds to the minimum of the curve
in Fig. 1. For isotopes beyond N = 32, appropriate extrap-
olations and larger model spaces are required and will be
considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard (Dyson) formulation of SCGF
implemented within the third-order algebraic diagrammatic
construction [ADC(3)], which goes beyond the full third
order [26,27]. The comparison in closed-shell isotopes 40Ca,
48Ca, and 52Ca (top panel of Fig. 2) shows that the correction
from third- and higher-order diagrams is rather constant along
the chain. Respectively, in Nmax = 9 we obtain E

ADC(3)−Dys
0 −
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FIG. 2. (Color online) Experimental (solid squares) [28–30] and
calculated ground-state energies of Ca isotopes. Top panel: Second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
a Nmax = 9 model space and the full Hamiltonian. Bottom panel:
Second-order Gorkov results with NN plus induced (crosses) and
NN plus full (open squares) 3NFs and Nmax = 13. Full 3NF Gorkov
results corrected for the ADC(3) correlation energy extracted from
the top panel (dotted line with solid triangles). IM-SRG results [12]
are for the same 3NF and are extrapolated to infinite model space
(diamonds with error bars).

E2nd−Gkv
0 = −10.6, −12.1, and −12.6 MeV, which correspond

to ≈2.7% of the total binding energy. Assuming that these
differences are converged with respect to the model space, we
add them to our second-order Gorkov results with Nmax=13
and display the results in the bottom panel of Fig. 2. Resulting
values agree well with IM-SRG calculations of 40Ca and
48Ca based on the same Hamiltonian [12]. This confirms the
robustness of the present results across different many-body
methods. The error due to missing induced 4NFs was also
estimated in Ref. [12] by varying the SRG cutoff over a
(limited) range. Up to ≈1% variations were found for masses
A ! 56 (e.g., less than 0.5% for 40Ca and 48Ca) when changing
λ between 1.88 and 2.24 fm−1. We take this estimate to be
generally valid for all the present calculations.

A first important result of this work appears in the bottom
panel of Fig. 2, which compares the results obtained with
NN plus induced 3NFs and NN plus full 3NFs. The trend
of the binding energy of Ca isotopes is predicted incorrectly
by the induced 3NFs alone. This is fully amended by the
inclusion of leading chiral 3NFs. However, the latter introduce
additional attraction that results in a systematic overbinding of
ground-state energies throughout the whole chain. Analogous
results are obtained for Ar, K, Sc, and Ti isotopic chains (not
shown here), leading to the same conclusion regarding the role
of the initial chiral 3NF in providing the correct trend and in
generating overbinding at the same time.

The NN plus induced 3N interaction, which originates
from the NN -only N3LO potential, generates a wrong slope
in Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and
are significantly too large (small) for N ! 20 (N > 20).
Including chiral 3NFs corrects this behavior to a large extent
and predicts S2n close to the experiment for isotopes above
42Ca. Figure 3 also shows results for microscopic shell
model [19,30] and coupled-cluster [9] calculations above
41Ca and 49Ca, respectively, which are based on similar chiral
forces. Our calculations confirm and extend these results
within a full-fledged ab initio approach for the first time.
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of
Ca isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the exper-
iment (solid squares) [28–30]. Results from shell-model calculations
with chiral 3NFs (solid line) [19,30] and coupled cluster (dashed
line) [9] are also shown.
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○ First 2+ excitation energy 

○ Two-neutron separation energy

○All relative quantities: what about absolute ones?

➝ Drip line prediction depends on interaction

➝ Trend correctly reproduced (less for radii)
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○ Charge radii isotopic shifts

➝ Successful predictions for N=32, 34

➝ 3N forces again crucial

⦿ Magic character assessed from several observables, e.g.



Towards heavier systems

⦿ Overbinding, overestimation of major shell gaps and too small radii when increasing A

[Binder et al. 2014]

[Somà et al. in preparation]

⦿ Several things still missing or to be improved…

○N3LO 3NF contributions missing

○ Induced many-body forces from SRG under control?

○ Local vs non-local regulators?

○ Thorough assessment of all theoretical uncertainties
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Fig. 5. (Color online.) Ground-state energies from CR-CC(2,3) for (a) the NN + 3N-induced Hamiltonian starting from the N3LO and N2LO-optimized NN interaction and (c) the 
NN + 3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip 
points into the direction of smaller values of α. Also shown are the contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN +3N-full results. 
All results employ h̄Ω = 24 MeV and 3N interactions with E3 max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3 max = 12. Black bars 
denote energies taken from [37,40].

NN + 3N-induced results, as seen in Fig. 5(c). In addition to the lo-
cal 3N interaction at N2LO with initial cutoff Λ3N = 400 MeV/c, 
we employ a second cutoff Λ3N = 350 MeV/c for comparison [13]. 
Our previous studies have shown that for both cutoffs, the induced 
4N interaction is small up into the sd-shell [8,13]. For heavier nu-
clei, Fig. 5(c) reveals that the α-dependence of the ground-state 
energies remains small for Λ3N = 400 MeV/c up to the heaviest 
nuclei. Thus, the attractive induced 4N contributions that originate 
from the initial NN interaction are canceled by additional repulsive 
4N contributions originating from the initial chiral 3N interaction. 
By reducing the initial 3N cutoff to Λ3N = 350 MeV/c, the re-
pulsive 4N component resulting for the initial 3N interaction is 
weakened [13] and the attractive induced 4N from the initial NN
prevails, leading to an increased α-dependence indicating an at-
tractive net 4N contribution. All of these effects are larger than 
the truncation uncertainties of the calculations, such as the cluster 
truncation, as is evident by the comparatively small triples contri-
butions shown in Fig. 5(b) and (d).

Because we cannot include the induced 4N interactions, we 
take advantage of the cancellation of these terms for the
NN + 3N-full Hamiltonian with Λ3N = 400 MeV/c in order to 
compare the energies to experiment. Throughout the different iso-
topic chains starting from Ca, the experimental pattern of the 
binding energies is reproduced up to a constant shift of the or-
der of 1 MeV per nucleon. The stability and qualitative agreement 
of the these results over an unprecedented mass range is remark-
able, given the fact that the Hamiltonian was determined in the 
few-body sector alone.

When considering the quantitative deviations, one has to con-
sider the consistent chiral 3N interaction at N3LO, and the initial 
4N interaction. In particular for heavier nuclei, the contribution of 
the leading-order 4N interaction might be sizable. Another impor-
tant future aspect is the study of other observables, such as charge 
radii. In the present calculations the charge radii of the HF ref-
erence states are systematically smaller than experiment and the 
discrepancy increases with mass. For 16O, 40Ca, 88Sr, and 120Sn 

the calculated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm 
too small [41]. These deviations are larger than the expected ef-
fects of beyond-HF correlations and consistent SRG-evolutions of 
the radii. This discrepancy will remain a challenge for future stud-
ies of medium-mass and heavy nuclei with chiral Hamiltonians.

8. Conclusions

In this Letter we have presented the first ab initio calculations 
for heavy nuclei using SRG-evolved chiral interactions. We have 
identified and eliminated a number of technical hurdles, e.g., re-
garding the SRG model space, that have inhibited state-of-the-art 
medium-mass approaches to address heavy nuclei. As a result, 
many-body calculations up to 132Sn are now possible with con-
trolled uncertainties on the order of approximately 2% for Ni, and 
2–4% for Sn isotopes. The qualitative agreement of ground-state 
energies for nuclei ranging from 16O to 132Sn obtained in a sin-
gle theoretical framework demonstrates the potential of ab initio
approaches based on chiral Hamiltonians. This is a first direct val-
idation of chiral Hamiltonians in the regime of heavy nuclei using 
ab initio techniques. Future studies will have to involve consistent 
chiral Hamiltonians at N3LO considering initial and SRG-induced 
4N interactions and provide an exploration of other observables.
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energies for nuclei ranging from 16O to 132Sn obtained in a sin-
gle theoretical framework demonstrates the potential of ab initio
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Propagating the uncertainty from 2N+3N to A-body

⦿ NNLO 2N+3N interaction from chiral EFT (in Weinberg power counting)

[Carlsson et al. 2016]

good description of all A ≤ 4 data. Some of the πN LECs
display large variations, but the χ2=Ndof (without model
error) for the πN data is within 2.28(4) for all of these
potentials. The subleading πN LECs become more positive
when NN scattering data at higher energies are included,
and c1, in particular, carries a larger (relative) statistical
uncertainty than the others. It is noteworthy that for a given
Tmax
Lab , and up to 1σ precision, the πN LECs exhibit Λ

independence. The NNN LECs, cD and cE, tend to depend
less on Tmax

Lab at larger values of Λ. However, they always
remain natural. It is also interesting to note that the tensor
contact CE1

is insensitive to Λ variations but strongly
dependent on the Tmax

Lab cut. It was shown in Fig. 6 that CE1

and c4 correlate strongly. This effect can already be
expected from the structure of the underlying expression
for the NNLO interaction.
To gauge the magnitude of model variations in heavier

nuclei, we computed the binding energies of 4He and 16O
by using the previously mentioned family of 42 NNLO
potentials. The resulting binding energies for 4He and 16O,
computed in the NCSM and CC, respectively, are shown in
Fig. 11. The NCSM calculations were carried out in a HO
model space with Nmax ¼ 20 and ℏω ¼ 36 MeV. The CC
calculations were carried out in the so-called Λ−CCSD(T)
approximation [7] in 15 major oscillator shells with
ℏω ¼ 22 MeV. The largest energy difference when going
from 13 to 15 oscillator shells was 3.6 MeV (observed
for Λ ¼ 600 MeV). From the observed convergence of the
correlation energy we estimate the uncertainty of excluded
higher rank excitation clusters to "5 MeV. For our
purposes, this provides well-enough converged results.
The NNN force was truncated at the normal-ordered
two-body level in the Hartree-Fock basis.

The Eð4HeÞ predictions vary within about a 2-MeV
range. For Eð16OÞ, this variation increases dramatically to
about 35 MeV. Irrespective of the discrepancy with the
measured value, the spread of the central values indicates
the presence of a surprisingly large systematic error when
extrapolating to heavier systems.
The statistical uncertainties remain small: tens of keV for

4He and a few hundred keV for 16O. These uncertainties are
obtained from the quadratic approximation with the com-
puted Jacobian and Hessian for 4He, while a brute-force
Monte Carlo simulation with 2.5 × 104 CC calculations
was performed for 16O. This massive set of CC calculations
employed the singles and doubles approximation (CCSD)
in nine major oscillator shells. We conclude that the
statistical uncertainties of the predictions for Eð4HeÞ and
Eð16OÞ at NNLO are much smaller than the variations due
to changing Λ or Tmax

Lab . However, this is only true for
simultaneously optimized potentials. For the separately
optimized NNLO potential (NNLOsep), the statistical
uncertainty of the Eð4HeÞ prediction is five times larger
than the observed variations due to changing Λ and Tmax

Lab .

V. OUTLOOK

The extended analysis of systematic uncertainties pre-
sented above suggests that large fluctuations are induced in
heavier nuclei (see Fig. 11). Furthermore, while predictions
for 4He are accurate over a rather wide range of regulator
parameters, the binding energy for 16O turns out to be
underestimated for the entire range used in this study. In
fact, there is no overlap between the theoretical predictions
and the experimental results, even though the former ones
have large error bars.
Based on our findings, we recommend that continued

efforts towards an ab initio framework based on χEFT
should involve additional work in, at least, three different
directions:
(1) Explore the alternative strategy of informing the

model about low-energy many-body observables.
(2) Diversify and extend the statistical analysis and

perform a sensitivity analysis of input data.
(3) Continue efforts towards higher orders of the chiral

expansion, and possibly revisit the power counting.
Let us comment briefly on these research directions. The
poor many-body scaling observed in Fig. 11 was prag-
matically accounted for in the construction of the so-called
NNLOsat potential presented in Ref. [35], where heavier
nuclei were also included in the fit. The accuracy of many-
body predictions was shown to be much improved, but the
uncertainty analysis is much more difficult within such a
strategy.
Second, to get a handle on possible bias in the statistical

analysis due to the choice of statistical technique, it is
important to apply different types of optimization and
uncertainty quantification methods. Various choices exist,

FIG. 11. Binding-energy predictions for (a) 4He and (b) 16O
with the different reoptimizations of NNLOsim. On the x axis
is the employed cutoff Λ. Vertically aligned red markers
correspond to different Tmax

Lab for the NN scattering data used
in the optimization. The experimental binding energies are
Eð4HeÞ ≈ −28.30 MeV, represented by a gray band in panel
(a), and Eð16OÞ≈−127.6MeV [98]. Statistical error bars on the
theoretical results are smaller than the marker size on this
energy scale.
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⦿ Fitting protocol

○ Simultaneous optimisation of all parameters (LEC)
○ Conventional fit on on πN and NN scattering + properties of 2H, 3H, 3He

⦿ Systematic uncertainty on 2N+3N

○Different maximum energies for NN phase shifts fits (Tlab)
○Different cutoff energies in regularisation procedure (Λ)

➝ Next order??

➝ 4He covers experiment, 16O doesn’t

➝ Signals breakdown?

➝ Large propagated uncertainty

potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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➝ RG invariance?



NNLOsat: changing the strategy

⦿ Some important deficiencies corrected    ➝    Systematic improvement?   Error estimates? 

⦿ New Hamiltonian with data from light nuclei in fit of low-energy constants
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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Conclusions & challenges

⦿ Many-body techniques

○ Great progress in last 10 years

0 20 40 60 80
0

0.05

0.1

0.15

0.2

A

|⟨V
3N

⟩| 
/ |

⟨V
2N

⟩|

14O

20O

40Ar
58Ti

78Ni

NNLOsat

Correlated 1st order

very
 preliminary

○Many-body uncertainties under control
○ Bottleneck for A>100 is treatment of 3N forces

⦿ Validity of “conventional” ab initio strategy

○When does it become inefficient?
○New EFT based on different degrees of freedom?

⦿ 2N, 3N, … forces

○ Chiral EFT: great promises, not yet fully exploited
○Uncertainty propagation is/will be crucial
○NNLOsat: filter or change of strategy?

good description of all A ≤ 4 data. Some of the πN LECs
display large variations, but the χ2=Ndof (without model
error) for the πN data is within 2.28(4) for all of these
potentials. The subleading πN LECs become more positive
when NN scattering data at higher energies are included,
and c1, in particular, carries a larger (relative) statistical
uncertainty than the others. It is noteworthy that for a given
Tmax
Lab , and up to 1σ precision, the πN LECs exhibit Λ

independence. The NNN LECs, cD and cE, tend to depend
less on Tmax

Lab at larger values of Λ. However, they always
remain natural. It is also interesting to note that the tensor
contact CE1

is insensitive to Λ variations but strongly
dependent on the Tmax

Lab cut. It was shown in Fig. 6 that CE1

and c4 correlate strongly. This effect can already be
expected from the structure of the underlying expression
for the NNLO interaction.
To gauge the magnitude of model variations in heavier

nuclei, we computed the binding energies of 4He and 16O
by using the previously mentioned family of 42 NNLO
potentials. The resulting binding energies for 4He and 16O,
computed in the NCSM and CC, respectively, are shown in
Fig. 11. The NCSM calculations were carried out in a HO
model space with Nmax ¼ 20 and ℏω ¼ 36 MeV. The CC
calculations were carried out in the so-called Λ−CCSD(T)
approximation [7] in 15 major oscillator shells with
ℏω ¼ 22 MeV. The largest energy difference when going
from 13 to 15 oscillator shells was 3.6 MeV (observed
for Λ ¼ 600 MeV). From the observed convergence of the
correlation energy we estimate the uncertainty of excluded
higher rank excitation clusters to "5 MeV. For our
purposes, this provides well-enough converged results.
The NNN force was truncated at the normal-ordered
two-body level in the Hartree-Fock basis.

The Eð4HeÞ predictions vary within about a 2-MeV
range. For Eð16OÞ, this variation increases dramatically to
about 35 MeV. Irrespective of the discrepancy with the
measured value, the spread of the central values indicates
the presence of a surprisingly large systematic error when
extrapolating to heavier systems.
The statistical uncertainties remain small: tens of keV for

4He and a few hundred keV for 16O. These uncertainties are
obtained from the quadratic approximation with the com-
puted Jacobian and Hessian for 4He, while a brute-force
Monte Carlo simulation with 2.5 × 104 CC calculations
was performed for 16O. This massive set of CC calculations
employed the singles and doubles approximation (CCSD)
in nine major oscillator shells. We conclude that the
statistical uncertainties of the predictions for Eð4HeÞ and
Eð16OÞ at NNLO are much smaller than the variations due
to changing Λ or Tmax

Lab . However, this is only true for
simultaneously optimized potentials. For the separately
optimized NNLO potential (NNLOsep), the statistical
uncertainty of the Eð4HeÞ prediction is five times larger
than the observed variations due to changing Λ and Tmax

Lab .

V. OUTLOOK

The extended analysis of systematic uncertainties pre-
sented above suggests that large fluctuations are induced in
heavier nuclei (see Fig. 11). Furthermore, while predictions
for 4He are accurate over a rather wide range of regulator
parameters, the binding energy for 16O turns out to be
underestimated for the entire range used in this study. In
fact, there is no overlap between the theoretical predictions
and the experimental results, even though the former ones
have large error bars.
Based on our findings, we recommend that continued

efforts towards an ab initio framework based on χEFT
should involve additional work in, at least, three different
directions:
(1) Explore the alternative strategy of informing the

model about low-energy many-body observables.
(2) Diversify and extend the statistical analysis and

perform a sensitivity analysis of input data.
(3) Continue efforts towards higher orders of the chiral

expansion, and possibly revisit the power counting.
Let us comment briefly on these research directions. The
poor many-body scaling observed in Fig. 11 was prag-
matically accounted for in the construction of the so-called
NNLOsat potential presented in Ref. [35], where heavier
nuclei were also included in the fit. The accuracy of many-
body predictions was shown to be much improved, but the
uncertainty analysis is much more difficult within such a
strategy.
Second, to get a handle on possible bias in the statistical

analysis due to the choice of statistical technique, it is
important to apply different types of optimization and
uncertainty quantification methods. Various choices exist,

FIG. 11. Binding-energy predictions for (a) 4He and (b) 16O
with the different reoptimizations of NNLOsim. On the x axis
is the employed cutoff Λ. Vertically aligned red markers
correspond to different Tmax

Lab for the NN scattering data used
in the optimization. The experimental binding energies are
Eð4HeÞ ≈ −28.30 MeV, represented by a gray band in panel
(a), and Eð16OÞ≈−127.6MeV [98]. Statistical error bars on the
theoretical results are smaller than the marker size on this
energy scale.
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