

From quarks and gluons to hadrons (through exclusive hard reactions)

Journées SFP - BPTN , CNRS - Paris , June 2016

B. Pire

CPhT, École Polytechnique, CNRS, Université Paris-Saclay, Palaiseau

Plan

- Quark and gluon content of nucleons
 - * measured but not understood
- - * Success in DVCS at JLab, HERMES, HERA \rightarrow JLab 12
- GPD properties -> Nucleon femtography
 - \rightarrow from GPDs to GDAs and TDA

Parton distributions

Extract quark and gluon content of nucleon

PDF = Fourier Transform of matrix elements

 $\langle N(p,\lambda)|\bar{\psi}(-z/2)_{\alpha}[-z/2;z/2]\psi(z/2)_{\beta}|N(p,\lambda)\rangle\Big|_{z^{+}=0,z_{T}=0}$ ON THE LIGHT CONE $z^{2}=0$ Extract how much quark and gluon remember the spin of the nucleon

 \Rightarrow understand μ^2 dependence but not initial value

Parton distributions in nuclei

→ Partons in a bound nucleon are different than in a free one

ratio of PDF for nucleon in lead / free nucleon

not really understood !

New tools

GPDs, TMDs, GDAs

from now on ... very biased examples !

✓ Factorisation between a hard part (perturbatively calculable) and a soft part (non-perturbative) Generalized Parton Distribution demonstrated for

$$Q^2 \rightarrow \infty$$
, $x_B = \frac{Q^2}{Q^2 + W^2}$ fixed and $t \ll$ fixed

D. Muller et al., Ji, Radyushkin, Collins et al., '94, '96,'98

Generalised Parton Distributions

Non-Local operators (as in DIS) and non diagonal matrix elements = soft part of the amplitude for exclusive reactions

GPD = Fourier Transform of matrix elements

$$\langle N(p',\lambda')|\overline{\psi}(-z/2)_{\alpha}[-z/2;z/2]\psi(z/2)_{\beta}|N(p,\lambda)\rangle\Big|_{z^{+}=0,z_{T}=0}$$

ON THE LIGHT CONE $z^2 = 0$

 $p'-p = \Delta$ $\Delta^2 = t$ $\Delta^+ = -\xi(p+p')^+$ $x-x'=2\xi$

Impact picture Representation

t dependence of GPDs maps transverse position b_T of quarks.

Fourier transform GPD at zero skewedness $q(x, b_T) = (2\pi)^{-2} \int d^2 \Delta_T e^{i\Delta_T \cdot b_T} H(x, \xi = 0, t)$ probability

Generalize at $\xi \neq 0 \rightarrow$ Quantum femtophotography.

The *t*-dependence of dVCS localizes transversally the quark or the gluon in the proton

Femtophotography of quark or gluon

in the proton

Impact picture Representation

Parton imaging with an EIC

Other tools for QCD understanding of hadrons

s - t crossing

Generalized Distribution Amplitude ↔ Generalized Parton distribution Muller et al, Fortsch.Phys. 42,101; Diehl et al, Phys Rev Lett 81, 1782

GDA = Fourier Transform of matrix elements

 $\langle A(p_1)B(p_2)|\bar{\psi}(-z/2)_{\alpha}[-z/2;z/2]\psi(z/2)_{\beta}|0\rangle\Big|_{z^+=0,z_T=0}$

ON THE LIGHT CONE $z^2 = 0$

3 quark operators : $DA \rightarrow TDA$

In backward meson electroproduction, one may factorize a non-perturbative part describing baryon to meson transition.

L.L.Frankfurt et al, PRD60(1999)

BP, L. Szymanowski, PRD 71; PLB 622 (2005)

Kinematics (light-cone vectors p, n)

$$p_{1} = (1+\xi)p + \frac{M^{2}}{1+\xi}n$$

$$p_{\pi} = (1-\xi)p + \frac{m^{2} - \Delta_{T}^{2}}{1-\xi}n + \Delta_{T}$$

$$u = (p_{1} - p_{\pi})^{2} \ll Q^{2} \sim O(W^{2})$$

skewness parameter : $\xi = \frac{Q^2}{2W^2 - Q^2}$

Factorization

The perturbative part describes the $\gamma^*qqq \rightarrow qqq$ transition. The non-perturbative part describes the proton-meson transition.

$$\langle \pi(p_{\pi}) | \epsilon^{ijk} u^i_{\alpha}(z_1 n) u^j_{\beta}(z_2 n) d^k_{\gamma}(z_3 n) | p(p,s) \rangle \Big|_{n^2=0}$$

Recall nucleon DA describing valence content of nucleon

$$\langle 0 | \epsilon^{ijk} u^i_{\boldsymbol{\alpha}}(z_1 n) u^j_{\boldsymbol{\beta}}(z_2 n) d^k_{\boldsymbol{\gamma}}(z_3 n) | p(p,s) \rangle \Big|_{n^2 = 0}$$

example from BP, L.Szymanowski, Kirill Semenov-Tian-Shansky, PRD82 (2010)

- generalize nucleon exchange to a well-defined QCD description
- \Rightarrow 8 leading twist TDAs for $N \rightarrow \pi$
- difficult to access experimentally
- → lattice calculations?

- Gluon saturation at small x and dense QCD approaches
- Transverse momentum dependent (TMDs) structure and fragmentation functions
 - * new phenomenology of semi inclusive processes
- Obvious progresses in lattice QCD calculations

Electron Ion Collider Design Parameters

Electron Nucleus(p, d, ...) Collider

Collider Energy 20 – ~100 GeV High Luminosity \rightarrow 10³³ - 10³⁴ cm²s⁻¹ Low x regime x \rightarrow 0.0001 High polarizations 70% Ion beams up to U or PB

CONCLUSION : We need new permanent positions

