

New properties of exotic nuclei, drip line

and open quantum systems

Outline:

- Generalities
- Already known new phenomena in exotic nuclei
- Emergent aspects in weakly bound systems
- Open questions and future of low energy nuclear physics.

From Dream to reality

Nuclei at the frontiers

Excitation Energy

> Pairing effects, continuum and other correlations

Resonantly interacting systems and new radioactivity?

From bound to unbound systems (passing the emission threshold) Correlation effect

Proton rich side

Exploring the transition from liquid nuclei to quasi-molecular states

Fermi liquid versus quasi-molecular states: some present and future questions

Yannouleas et Lanzman, Rep. Prog. Phys. (2007)

Traditional single-particle Shell picture

Shell structure and Nuclear interactions

Neutron Number (N)

Neutron Number (N)

Towards less-empirical approach to low energy nuclear physics

Starting point : Chiral Lagrangian

$$\mathcal{L}_{QCD} \longrightarrow \mathcal{L}_{EFT} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \cdots$$

- Direct link to QCD (chiral)
 Systematic Constructive method
- Consistent NN, 3N, 4N ...

Drischler, Hebeler, and Schwenk Phys. Rev. C 93 (2016)

What about the unification of theory for nuclei?

Ab-initio vs experiments

p_{lab} (MeV/c)

p_{lab} (MeV/c)

From nuclei to hypernuclei (see E. Khan discussion)

(for comparison nn, np... between 2000/3000 data)

Reactions with exotic nuclei: just some remarks

hl

We know that reactions are more complex with exotic nuclei

- Enhanced effect of continuum and break-up
- Need for precise and dedicated improvement of understanding and description of spectroscopic tools: Transfer reactions, break-up and knock out

Onset of new collective excitations (especially in isovector channels)

Large amplitude collective motion is also modified

- Competition between transfer and fusion deep below the Coulomb barrier
- Competition between break-up and neutron rich assisted fusion
- Isospin and pairing effect on fission ?

Probing sub-nucleonic degrees of freedom with low energy nuclear data? Understanding the interaction between nucleons from first principle

How organizes neutron and proton matter in neutron rich systems?

- Physics of systems at anomalously large scattering length (close to unitary regime)
- Systems at very low density

Pairing effects, continuum and other correlations

Coexistence of particle like and neutron-proton pairing in nuclei, quarteting and origin of clustering in nuclei?

Search for the existence of new radioactivity?