

Nuclear Matter, Phase transitions and Clustering

Olivier LOPEZ LPC Caen, France

Les grandes questions en Physique nucléaire fondamentale Journées SFP-BTN, 21 - 22 Juin 2016

Equation of state

of

Nuclear matter

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Nuclear Equation of State

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

→ LG **Coexistence** (1st order), critical **température** (2nd order)

→ Zone for Mechanical Instabilities (density fluctuations) : spinodal zone

Microscopic Description of Nuclei

Self-consistent Mean-Field calculations are probably the only possible framework to understand the structure of medium and heavy nuclei.

Direct link to EOS and Symmetry Energy

$$E = \langle \psi \mid H \mid \psi \rangle$$
$$H = \langle \phi \mid H_{eff} \mid \phi \rangle$$

 $H = E[\rho]$

Energy-Density Functionals

Symmetry Energy (at low density)

$$\mathbf{E/A} (\boldsymbol{\rho}, \boldsymbol{\delta}) = \mathbf{E/A} (\boldsymbol{\rho}, \mathbf{0}) + \delta^2 \cdot \mathbf{S}(\boldsymbol{\rho})$$
$$\delta = (\boldsymbol{\rho}_n - \boldsymbol{\rho}_p) / (\boldsymbol{\rho}_n + \boldsymbol{\rho}_p) = (\mathsf{N} - \mathsf{Z})/\mathsf{A}$$

Constraints for Astrophysics (NS) and for laboratory experiments

- Needed for transport models and nuclear matter studies (Thermodyn.)
- Link to the NN interaction (isovector) in the nuclear medium

Density dependence for SE

M.B. Tsang, Prog. Part.Nucl.Phys. 66, 400 (2011) Brown, Phys. Rev. Lett. 85, 5296 (2001)

EOS : connection with nuclei

Astrophysical context (NS)

Nuclear matter : **Bulk** properties

Extensive systems (volume)

Symmetric NM or pure neutron matter $(\delta=0,1)$

Terrestrian Labs (HIC)

Nuclei : Finite-size effects

Non-extensive systems (surface, Coulomb)

Asymetric NM $(|\delta| \sim 0.0.5, E_{sym})$

Phase Diagram and Phase Transitions for strongly correlated finite-sized systems : (non)-extensivity and quantality

Thermodynamics :

Phase transitions in nuclei

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Phases and Transitions

Phase diagram

Dynamical origin of multifragmentation as a spinodal decomposition...

Charge correlation : spinodal decomposition ?

Intra-event correlation :

$$\Delta Z = \frac{1}{M} \Sigma_i^M (Z_i - \langle Z \rangle)$$

Correlation Function :

Xe + Sn 32A MeV

B. Borderie, *et al.* (INDRA coll.) Phys. Rev. Lett. 86, R217 (2001)

- Signal is weak (fossile) \rightarrow more statistics is needed ! - Mass and N/Z dependence ?

Dynamics :

Diffusion and Transport properties

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Theoretical background on transport properties

- Mean-Field effects : 1-body dissipation → viscosity/friction
 Collective properties : nuclear degrees of freedom (Mean-Field)
- > *NN* collisions : **2-body dissipation** $\rightarrow \lambda_{NN}^*, \sigma_{NN}^*$ Individual properties : **nucleonic** degrees of freedom (collisions)
- ➤ Transition in incident energy should be observed where MF weakens and NN collisions become more and more likely → $E_t \approx E_{Fermi}$
- In-medium effects for NN_collisions :
 - Renormalization of $\sigma_{_{\!N\!N}}$ as compared to vacuum: quenching factor
 - Due to Pauli blocking (2-body) but also to higher-order correlations (density effects via many-body correlations).

Mean free path (rather) constrained both theoretically and experimentally above $E_{inc}/A > 100 \text{ MeV}$: $\lambda_{NN} = 4-5 \text{ fm}$ but not below...

Experimental probe is the stopping : transparency/translucency

Nucleon mean free path in nuclear medium

- For the first time : experimental systematics in the Fermi energy domain

→ $\lambda_{NN} \ge R$: complete stopping and thermalization not achieved... J. Su and F.S. Zhang, PRC 87, 017602 (2013) [AMD]

Contradictory findings with SMF by E. Bonnet, et al., PRC 89, 034608 (2014)

Mean free path in microscopic theories

QFT-SCGF + CD-Bonn int. A. Rios and V. Soma, *PRL* **108**, 012501 (2012)

> • Calculations at $\rho = \rho_o$ for different temperatures

T= 4-8 MeV

• Calculations at **T=5 MeV** for different densities

 ρ = 0.8-1.2 $\rho_{_0}$

Enhanced sensitivity for *E≈E*_{Fermi}

Mean free path and thermalization process

INDRA data / ELIE model (micro/macro) for the isotropy ratio : ⁵⁸Ni+⁵⁸Ni @ 40A MeV

 λ : mean free path for *NN* collisions in the participant zone

 $\rightarrow E_{iso}$ is compatible with λ =10-15 fm (\geq Rproj+Rtarg) at E_{Fermi}

This suggests that **complete thermalization** is not achieved since the number of collisions per participant is less than $1... \rightarrow$ What about **Isospin diffusion ?**

In-medium effects : renormalization (quenching) factor in nuclear medium

Danielewicz (phenomenologic !): $F = \sigma_0 \tanh(\sigma_{free}/\sigma_0)$, with $\sigma_0(mb) = 8.5/\rho^{2/3}$

Clustering in Nuclei

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Clustering in α -conjugate nuclei

CHIMERA: ⁴⁰Ca + ¹²C @ 25A MeV

Excited ¹⁶0, ²⁰Ne, ²⁴Mg for projectile fragmentation of ⁴⁰Ca

- Data agrees with a simultaneous emission

- Competition between **DD** (Nα) and **SD** (⁸Be)

B. Borderie, AD.R. Raduta, G. Ademard, M.F. Rivet et al., PLB 755 (2016)

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

INDRA – VAMOS coupling@ GANIL

a

- 3 beams : ³⁴Ar, ³⁶Ar, ⁴⁰Ar @ 12.7-13.5 MeV/nucleon - 3 targets : ⁵⁸Ni, ⁶⁰Ni, ⁶⁴Ni

- Complete Fusion (9 isotopes) : ⁹²Pd - ¹⁰⁴Pd Q vs A/Q - System 36Ar-58Ni VAMOS 28 60 26 30 20 10 A/Q Extrapolation of level density parameter starting from stable nuclei **INDRA** a (MeV⁻¹ (Preliminary) Slope of Energy Spectrum N/Z dependence for a in ¹H : T=4.1 MeV 12 10⁵ ²H : T=5.7 MeV *p*-rich nuclei : ³H : T=7.2 MeV 10 Case A ³He : T=7.7 MeV 8 ⁴He : T=5.7 MeV A/12 10 dN/dE ¹⁰⁴Pd ⁹¹Pd ⁹⁴Pd ⁹⁶Pd ¹⁰⁰Pd $E^* = aT^2$ 10³ 65 N 47.5 50 52.5 62.5 45 55 57.5 60 extrapolation according to : 10² R.J. Charity Phys. Rev. C67-044611(2003) 50 0 10 20 30 40 S.I. Al-Quraishi Phys. Rev. C63-065803(2001) E(MeV)

A stringent Benchmark for Statistical Models

- \rightarrow Impose strong constraints for statistical models
- \rightarrow Possibility to observe angular correlation between particles

Lou AUGEY, LPC Caen

IWM-EC 2016

10 / 15

A stringent Benchmark for Statistical Models

Experimental program :

Mid-term : 10 years

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Coupling INDRA and FAZIA LoI GANIL 2014 Stable beams CSS2

FAZIA (démonstrator)

Isospin dep. of **multifragmentation**, radial flow and isospin diffusion/migration

^{124,136}Xe+^{40,48}Ca *30A-50A MeV*

Vaporization @ low density Isoscaling A_{max}

^{40,48}Ca + ^{40,48}Ca 35A-80A MeV

Staggering (pairing) QP, clustering

^{80,86}Kr + ^{40,48}Ca 35A MeV

INDRA-FAZIA : 2020+ @SPIRAL2

Lol SP2 : a large "panoplie" of *n*-rich and *p*-rich beams is necessary with bombarding energies above the Coulomb barrier and up to the maximum SPIRAL2 possibilities.

- Limiting temperatures in hot N/Z asymmetric nuclear systems
- > N/Z dependence of nuclear level densities in warm nuclei
- Clustering studies and validity of statistical theories
- Studies with **dissipative peripheral collisions** and probes of the symmetry energy
- > Accessing the nuclear symmetry energy from fragment isotopic distributions

1. Medium mass systems ($A_{tot} \approx 140$) ⁷⁸Zn+⁶⁴Ni, ⁹⁴Kr +⁵⁰Ti, ⁹⁶Sr + ⁴⁸Ca, ⁷²Kr + ⁵⁰Ti 2. Heavy mass systems ($A_{tot} \approx 190$) ¹¹⁴⁻¹⁴⁵Xe +^{40,48}Ca, ¹²²Cd + ⁵⁸Ni, ⁹⁰Kr + ⁹⁰Zr 3. Same mass, but $\neq Z$ ^{72,78}Kr + ²⁸Si and ^{74,80}Zn + ²⁶Mg

Day 1 experiment (coupling FAZIA with a spectrometer)

Isospin dependence on reaction mechanisms : formation/decay of excited nuclei

 $^{80-94}$ Kr + 40,48 Ca/ 12,13 C, E= 5A to 10A MeV (competition between fusion and DIC)

Experimental program :

Long-term : >10 years ...

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

Phases and Transitions

Phase diagram

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

SFP-BTN, June 21-22, 2016

DISTRIBUTED FACILITY

Concepts for Fundamental Physics

DFT approach to nuclear physics: towards an universal functional

- . Study the energy functional for asymmetric nuclear matter
- . Constrain the isovector part of the energy (symmetry energy)
- Produce sub- and super-saturation density matter through HI-induced reactions

Nuclear matter phase diagram and finite nuclei phase transitions

- . Scan the low-temperature region of the nuclear matter phase diagram
- Characterize the phase transition (location, order, critical points, ...)
- Evidence thermodynamical anomalies in finite systems
- · Complementary to the ALICE Physics Program at high energy (QGP)

From finite nuclei to compact star matter

- . Constrain MF models for Astrophysics studies
- . Study the structures and phase properties of neutrons stars crusts

Toward the Future ...

0.10 0.15

0.00

0.05

Stochastic approaches beyond *MF* : Pairing, Clustering, ... Statistical Models : N/Z, continuum, ...

0.10

0.00

0.05

M. Colonna, Ph. Chomaz and S. Ayik, PRL 88 (2002) 122701

Density $\rho(\text{fm}^{-3})$

0.10

E

0.00

0.05

To be continued ...

Olivier LOPEZ (lopezo@in2p3.fr), LPC Caen

DISTRIBUTED FACILITY

Key Experiments : what is needed (facility side)

(I) Density dependence of the nuclear symmetry energy (DDSE) ⁵⁶Ni - ⁷⁴Ni, ¹⁰⁶Sn -¹³²Sn, E/A = 15 – 50 MeV

(II) Neutron-Proton effective mass splitting (NPMS) ⁵⁶Ni - ⁷⁴Ni, ¹⁰⁶Sn - ¹³²Sn , E/A=50-100 MeV

(III) Isospin-dependent phase transition (IDPT)

⁵⁶Ni - ⁷⁴Ni, ¹⁰⁶Sn - ¹³²Sn, ²⁰⁰Rn - ²²⁸Rn, E/A = 30 – 100 MeV

(IV) Isospin fractionation, Isoscaling (IFI) ⁵⁶Ni - ⁷⁴Ni, ¹⁰⁶Sn -¹³²Sn, ²⁰⁰Rn - ²²⁸Rn, E/A = 30 – 100 MeV

Key Points are :

- large panoply of beams (light, medium, large A) over the maximal N/Z extension
- Beam energy range around and above the Fermi domain (15-100 AMeV)
- Beam intensity around 10⁶-10⁸pps, small emittance, good timing (<1ns)

Stopping power in central HIC

Nuclear Stopping

Physics Motivations

Dynamics of heavy ion collisions

- Reaction mechanisms and transport properties
 - Deep Inelastic, neck emission, multifragmentation
 - Isospin diffusion, nuclear stopping, particle flows
 - In-medium properties : NN mean free path and cross section
- Link to the **EOS**
 - **Compressibility** (radial/elliptic flows)
 - Symmetry energy for asymetric NM

Thermodynamics of (hot) nuclear matter

- Nuclear matter in proto-neutron stars
 - **bulk** properties vs **finite size** effects (surface, coulomb, nuclei)
- Phase transitions for strongly correlated systems
 - Phase diagram : Liquid-Gas phase transitions, first/second order
 - Temperature/Density/Isospin dependence
 - Spinodal decomposition

About the scale...

Degrees of Freedom

Energy (MeV)

From EOS to Phase diagrams

Symmetric NM Z/A=0.5 30 Pressure (MeV/fm³) 90 80 1 Energy (MeV) T (MeV)= T (MeV) = 25 30 20 15 0.4 10 0.2 20 5 15 0 -0.2 -5 -0.4 -0.6 -10 -15 -0.8 spinodal zone (dP/dp<0) Saturation point -20 0 0.2 0.6 0.8 1.2 1.4 1.6 2 0.2 0.4 1 1.8 0 Density (ρ/ρ_0)

EOS for Z/A=0.50 and different temperatures (T=0-20 MeV)

EOS for Z/A=0.50 and different temperatures (T=0-20 MeV)

E,P (extensive) dependence as a function of density and temperature (intensive)

Motivations

Connection between transport properties and the Equation of State :

Energy dissipation [thermalization] and isospin diffusion [Esym(p)]

- Transport properties are mandatory for :
 - Description of **supernova collapse** and formation of **neutron stars**
 - Determination of the **nuclear EOS** via the underlying properties of the **nuclear interaction**
 - **Microscopic descriptions** as one of the fundamental ingredient for the dissipative features: **EOS** and **collision term**